2022

PHYSICS - HONOURS

(Syllabus : 2019-2020 \& 2018-2019)

Paper : CC-1
[Mathematical Physics - I]
Full Marks : 50
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 and any four questions from the rest.

1. Answer any five questions:
(a) Evaluate $\underset{x \rightarrow 4}{\operatorname{Lt}} \frac{\sqrt{x}-2}{x-4}$, if it exists.
(b) Plot schematically $x e^{-x}$ vs. x for $0 \leq x<\infty$.
(c) Find whether vectors $2 \hat{i}+5 \hat{j}+3 \hat{k}, \hat{i}+\hat{j}+\hat{k}$ and $4 \hat{i}-2 \hat{j}$ are linearly independent.
(d) Find the Taylor series expansion of $\ln x$ about $x=2$.
(e) Determine Wronskian of the two solutions to the following differential equation $x^{4} y^{\prime \prime}-2 x^{3} y^{\prime}-x^{8} y=0$.
(f) Find the eigenvalues of the matrix $\left(\begin{array}{cc}3 & i \\ -i & 3\end{array}\right)$.
(g) Prove that the eigenvalue of a skew Hermitian matrix is purely imaginary.
2. (a) Plot the function $f(x)=x^{2}$ and its first derivative.
(b) Find the constant term in the expansion of $\left(x^{2}+\frac{1}{x^{2}}\right)^{6}$.
(c) Check whether $d f=\left(3 x^{2}-3 a y\right) d x+\left(3 y^{2}-3 a x\right) d y$ is an exact differential.
(d) Find the series expansion of $\frac{1}{1-x}$. Mention its interval of convergence.

Or,

(For Syllabus : 2018-2019)
(d) Consider

$$
f(x)= \begin{cases}x^{m} \sin \left(\frac{1}{x^{n}}\right) & x \neq 0 \tag{4}\\ 0 & x=0\end{cases}
$$

Find out the condition on m and n so that $f(x)$ is differentiable at $x=0$.
3. (a) Solve the equation:

$$
e^{x} \sin y d x+\left(e^{x}+1\right) \cos y d y=0
$$

(b) Check whether the function $\sin x, e^{x}$ and e^{-x} are linearly independent or not.
(c) A rectangular box open at the top is to have a volume of 32 cc . Find the dimensions of the box that requires minimum surface area for its construction.
4. (a) Find the directional derivative of $\phi=x^{2} y+x z$ at $(1,2,-1)$ in the direction of $\vec{A}=2 \hat{i}-2 \hat{j}+\hat{k}$.
(b) If $\vec{\nabla} \times \vec{F}=4 x \hat{i}-2 x \hat{j}+c z \hat{k}$ then find c.
(c) Consider two vector fields $\vec{F}_{1}=2 x \hat{i}-2 y z \hat{j}-y^{2} \hat{k}$ and $\vec{F}_{2}=y \hat{i}-x \hat{j}$. Which of the above is a conservative field? For the non-conservative field, calculate the work done if it acts on an object moving from $(-1,-1)$ to $(1,1)$ along the straight line joining the two points.
5. (a) A fluid motion is given by $\vec{v}=(y+z) \hat{i}+(z+x) \hat{j}+(x+y) \hat{k}$. Show that the motion is irrotational and hence find the velocity potential.
(b) Use Green's theorem to evaluate

$$
\oint_{c}\left[\left(x y+y^{2}\right) d x+x^{2} d y\right]
$$

where c is the triangle with vertices $(0,0),(1,0)$ and $(1,2)$.
(c) Evaluate $\iint \vec{A} \cdot d \vec{s}$ where $\vec{A}=x \cos ^{2} y \hat{i}+x z \hat{j}+z \sin ^{2} y \hat{k}$ over the surface of a sphere with centre at the origin and of radius 3 unit. $3+4+3$
6. (a) The matrices A and B satisfy $(A B)^{T}+B^{-1} A=0$. Prove that if B is orthogonal, then A is anti- symmetric.
(b) Find out the eigenvalues and normalized eigenvectors of the matrix $M=\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right)(a \neq 0)$. Find out M^{n} where ' n ' is a positive integer.
(c) Explain whether the inverse of the following matrix exists $\left(\begin{array}{lll}1 & 0 & 1 \\ 2 & 2 & 0 \\ 1 & 1 & 0\end{array}\right)$. $2+(1+2+2)+3$
7. (a) If $A^{2}=A$, then show that $e^{\theta A}=\mathbb{I}+\left(e^{\theta}-1\right) A$.
(b) Given $A=\left(\begin{array}{ccc}0 & a & b \\ -a & 0 & c \\ -b & -c & 0\end{array}\right)$; what can you comment on the nature of eigenvalues of A without solving the characteristic equation.
(c) Show that two similar matrices have the same characteristic polynomial.
(d) Show that for a orthogonal matrix, each column is orthogonal to other ones.

